Product Updates

The Role of CFM in Air-Operated Double Diaphragm Pumps

Air-operated double diaphragm pumps are versatile and reliable devices widely used in various industries, including chemicals, food and beverage, and wastewater treatment. AODD pumps are valued for their simplicity, ability to handle a wide range of fluids, and resistance to damage from dry running or deadheading. They are used in applications where traditional electric or centrifugal pumps might fail, such as pumping abrasive, viscous, or shear-sensitive fluids. A key element of their functioning involves the air flow usually quantified in feet, per minute (CFM). Grasping the importance of CFM in Air-operated double diaphragm pumps is vital for enhancing their effectiveness maintaining efficiency and avoiding challenges. Let’s delve into why CFM matters in air-operated pumps its impact on their operation and approaches, to overseeing air supply. The Importance of CFM in Air-Operated Pumps CFM, or cubic feet per minute, is a measure of the volume of air that flows into the pump per minute.  The CFM rating is crucial because it directly affects the pump's performance, efficiency, and operational stability. Here's why CFM is important in the context of AODD pumps: Performance and Flow Rate: The CFM of the air supply determines the speed at which the diaphragms move, thus affecting the pump's flow rate. Higher CFM means more air volume is driving the diaphragms, resulting in a higher flow rate of the pumped fluid. Conversely, insufficient CFM can lead to reduced pump performance, causing lower flow rates and potentially affecting the overall process efficiency. Pump Efficiency: Optimizing the CFM ensures that the pump operates within its designed parameters, maximizing efficiency. Proper air supply reduces energy consumption and wear on the pump components. Over-pressurization or inadequate air supply can lead to energy wastage and increase the operational costs of the pump system. Preventing Operational Issues: Correct CFM settings help prevent common issues such as stalling, irregular flow, and cavitation. Stalling occurs when the pump does not receive enough air to complete its cycle, causing interruptions in the pumping [...]

2024-07-09T10:54:53-05:00July 3, 2024|News|

Common Mistakes to Avoid When Priming an Air Operated Pump

Air operated double diaphragm pumps are an excellent choice for transfer applications due to their simple design, which makes operation easy and repairs inexpensive. To obtain optimal performance, the pump must be correctly installed and operated. Despite their durability mishandling during the priming phase can result in inefficiencies pump damage or complete malfunction. To ensure peak performance and longevity of your AODD pump it's vital to steer clear of priming errors. In this guide, we will discuss about the coming mistakes to avoid when priming an air operated pump. Understanding Priming in Air Operated Pumps Priming is the process of preparing a pump to operate by removing air from the pump and its suction line, allowing the pump to create the necessary vacuum to draw liquid. For air-operated pumps, priming is essential because these pumps rely on air pressure to move diaphragms that, in turn, move the fluid. Without proper priming, the pump cannot function correctly, leading to cavitation, reduced flow rates, and potential damage. Common Mistakes to Avoid Ignoring Manufacturer's Instructions: One of the most prevalent mistakes is neglecting to follow the manufacturer’s instructions. Each air-operated pump model has specific requirements and guidelines provided by the manufacturer. These instructions include detailed steps for priming, recommended pressures, maximum vertical suction lift and maintenance schedules. Ignoring these can lead to improper priming and subsequent pump failure. Solution: Always read and adhere to the manufacturer’s manual. This will ensure that you are using the pump within its designed parameters and following the correct priming procedure. Incorrect Air Pressure Settings: Air-operated pumps require a specific air pressure to operate efficiently. Too low pressure can prevent the pump from priming correctly, while too high pressure can damage the diaphragms and other components. The AODD pump draws fluid by creating a low-pressure zone within the fluid bowls, which is below the atmospheric pressure of 14.7 psi. If the air pressure supplied to the pump is too high, it causes the [...]

2024-07-09T11:05:21-05:00July 3, 2024|News|

How Stainless-Steel Diaphragm Pumps Revolutionize the Different Industries

Stainless steel diaphragm pumps have transformed industries with their durability, flexibility and capability to handle a range of fluids including those that are corrosive and abrasive. These pumps belong to the displacement pump category, which is renowned for its capacity to manage a spectrum of fluids such, as corrosive and abrasive substances. The use of stainless steel material sets them apart from diaphragm pumps by offering exceptional resistance to corrosion and long lasting performance. The operation of a stainless steel air diaphragm pump is straightforward yet efficient. It consists of a chamber with inlet and outlet ports linked by a diaphragm. When the diaphragm moves it creates suction that pulls fluid into the chamber. Subsequently the fluid exits through the outlet port. The stainless steel construction ensures compatibility with fluids while also providing the robustness for demanding industrial settings. Stainless diaphragm pumps find applications across industries, like pharmaceuticals, food processing and chemical manufacturing. Key Components and Features of Stainless-Steel Diaphragm Pumps Stainless steel air diaphragm pumps are renowned for their robust construction and reliable performance. Understanding their key components and features provides valuable insight into why they have become the preferred choice across various industries. Stainless Steel Construction: The primary material used in the construction of stainless steel double diaphragm pumps is stainless steel, known for its exceptional corrosion resistance and durability. It is non-reactive, making it suitable for handling a wide range of fluids, including corrosive chemicals, pharmaceuticals, and food products. Its smooth, non-porous surface minimizes the risk of bacterial growth, ensuring hygienic operation in different applications. Diaphragm Assembly: At the heart of a diaphragm pump is the diaphragm assembly, consisting of a flexible diaphragm made from materials such as Teflon, Santoprene, or EPDM (ethylene propylene diene monomer). The diaphragm separates the pump chamber into two sections, creating suction on one side and discharge on the other as it flexes. Diaphragms are designed to withstand repeated flexing without fatigue, ensuring long-term reliability and performance. Air Distribution [...]

2024-06-24T05:14:17-05:00May 2, 2024|News|

Optimizing Operations: A Guide to Interpreting Air Diaphragm Pump Curves

In the realm of industrial operations, efficiency is paramount. Whether it’s in manufacturing, chemical processing, or wastewater treatment, optimizing processes can lead to significant cost savings, increased productivity, and enhanced safety. One crucial component in many industrial processes are air diaphragm pumps. Understanding its performance characteristics is vital for maximizing its efficiency. Before delving into pump curves, it’s essential to grasp the basics of air diaphragm pumps. These pumps are versatile and find application across various industries due to their ability to handle a wide range of fluids. They operate using compressed air, which alternately flexes a diaphragm, creating suction and discharge strokes to move fluid through the pump. Air Operated Double Diaphragm Pumps are often abbreviated to AODD, AOD, or shortened to Diaphragm Pump. What is a Pump Curve? A pump curve is a graphic depiction that highlights a pump's performance capabilities over a range of rated flow and pressure at various operating points. The ability to analyze a pump curve chart is critical for recognizing the complete range of a pump's operating points. Engineers and experts use this expertise when selecting the best pump for a certain application. A diaphragm pump curve will typically indicate the air supply pressure and volume required for the pump to work as intended. All curves are based on water, with flooded suction and open exit, therefore ensure that curve assumptions match desired application. Why Air Diaphragm Pump Performance Curve Matter? Air diaphragm pump performance curves are essential because they provide crucial information about the pump's capabilities and efficiency under different operating conditions. Here's why they matter: Efficiency Optimization: The performance curve illustrates how the pump performs at various flow rates and pressure levels. By analyzing the curve, engineers can determine the most efficient operating point for the pump. This optimization helps minimize energy consumption and operating costs. System Design: Understanding the pump's performance curve is vital for designing fluid systems. Engineers can select pumps that match the [...]

2024-05-02T05:02:31-05:00May 2, 2024|News|

Common Problems and Troubleshooting for Sludge Pump Systems

Sludge pump systems of wastewater management and industrial processes, quietly manages the challenging task of transporting and disposing of thick sludge and similar materials. From urban wastewater treatment facilities to industrial complexes, these systems are the backbone of countless operations, ensuring compliance with environmental regulations and maintaining operational efficiency. However, the seamless operation of sludge pump systems is far from guaranteed, as they are susceptible to a range of issues that can disrupt operations and incur substantial costs. Let's explore the common problems that sludge pump system face and understand the critical role that maintenance and troubleshooting play in ensuring the reliable performance of these vital systems. Pump Clogging Pump clogging is a prevalent issue in sludge pump systems and can be attributed to several root causes. One primary cause is the presence of foreign objects, such as debris, plastics, or solid materials, which can accidentally enter the pump and obstruct its flow path. Additionally, highly viscous or thick sludge can prove challenging to transport smoothly through the pump, often resulting in congestion and blockages. Inadequate screening or filtering mechanisms can also contribute to clogging by allowing large particles to enter the pump. Clogging leads to a reduced flow rate, obstructing the transport of sludge and prolonging processing times. This reduction in flow rate also translates into increased energy consumption as pumps work harder to overcome the resistance caused by blockages, resulting in elevated operational costs. Troubleshooting Steps Regular maintenance: Regular maintenance is crucial to prevent clogs from occurring in the first place. Routine inspections and maintenance checks help identify and address potential issues before they escalate. Proper Screening and Filtering: Implementing proper screening and filtering mechanisms can significantly reduce the risk of clogs by preventing large debris and particles from entering the pump, ensuring smoother operation. Adjusting Pump Speed: Reducing the speed can alleviate stress on the system, allowing it to handle sludge more efficiently and potentially preventing clogs. Conversely, increasing the speed may help dislodge minor clogs. [...]

2024-06-24T05:17:52-05:00January 22, 2024|News|

How to Select Right Slurry Pump for Your Mining Operation?

In the world of mining operations, where efficiency and productivity reign supreme, the significance of choosing the right slurry pump cannot be overstated. The selection of an appropriate slurry pump isn't merely a matter of preference; it is a decision that can profoundly affect the very core of mining activities. Explore the critical importance of making the correct choice when it comes to slurry pumps and the far-reaching impacts this decision can have on the overall success and profitability of mining operations. Whether you are a seasoned mining professional seeking to optimize your processes or a newcomer navigating the complexities of this industry, understanding the crucial role of slurry pump selection is a fundamental step towards achieving operational excellence. Understanding Slurry Pumps Slurry pumps are specialized type of AODD pumps designed to efficiently move a mixture of solids (such as minerals, sand, or gravel) suspended in a liquid (typically water or a chemical solution). This abrasive and often abrasive mix, known as slurry, can be incredibly dense and challenging to transport using standard pumps. The primary purpose of slurry pumps is to facilitate the movement of these heavy and abrasive slurries from one point to another within mining, mineral processing and other industries. Whether it's transferring ore, tailings, or processing materials in various stages of production, slurry pumps ensure a reliable and consistent flow, contributing significantly to operational efficiency and productivity. They are engineered to withstand the harsh conditions and high-wear environments commonly found in mining operations, making them indispensable tools for handling slurries effectively. Assessing Your Mining Operation Identifying the specific needs of your mining operation is a foundational step in the process of selecting the right high pressure slurry pump. To make an informed choice, it's essential to gain a comprehensive understanding of the unique requirements and objectives of your mining venture. Firstly, consider the nature of the minerals or materials you're extracting; different substances may necessitate distinct slurry pump specifications due to variations in particle size, [...]

2024-07-09T10:50:18-05:00January 22, 2024|AODD Pumps|

Centrifugal vs. Positive Displacement Slurry Pumps: Which is better?

In the world of fluid handling, slurry pumps quietly powers countless industries by transporting abrasive and viscous materials. These robust machines play a pivotal role in industries ranging from mining and wastewater treatment to agriculture and construction. However, the selection of the right slurry pump can be a critical decision, often determining the efficiency, reliability and longevity of an entire operation. Let's understand two types of slurry pumps: centrifugal and positive displacement slurry pumps. By understanding their mechanisms, advantages and limitations, you'll be better equipped to answer the fundamental question: Which is the superior choice for your specific application? Explore the world of centrifugal and positive displacement slurry pumps and uncover the secrets to making the right choice. Centrifugal Slurry Pumps Centrifugal slurry pumps operate on a fascinating principle that enables them to efficiently handle various slurry materials. At their core, these pumps employ an impeller-driven mechanism, which is a key component of their operation. The impeller is a specially designed, high-speed rotating component within the pump housing. The key to the impeller's effectiveness lies in the application of the centrifugal force principle. As the impeller rapidly rotates, it imparts kinetic energy to the slurry particles present in the pump. The centrifugal force generated by this rotation causes the slurry to move outward from the center of the impeller towards the outer edges. As a result of this centrifugal force, the slurry gains momentum and is directed towards the pump's discharge outlet. This process effectively creates a flow of the slurry through the pump, allowing it to be transported from one point to another. Centrifugal slurry pumps rely on the combined action of the impeller's rotation and the centrifugal force it generates to propel the slurry, making them highly efficient at handling high-flow, low-viscosity slurries in a wide range of industrial applications. Limitations of Centrifugal Slurry Pumps Inefficiency with High-Viscosity and Abrasive Slurries: One of the primary limitations of centrifugal slurry pumps is their reduced efficiency when dealing with high-viscosity [...]

2024-06-24T05:19:07-05:00January 12, 2024|AODD Pumps|

Reading and Understanding AODD Pump Curves – Part of the Prescription

Reading and Understanding AODD Pump Curves – Part of the Prescription I have always used the work “prescribe” rather than suggest or recommend an AODD model for an application. Just as when you go to the doctor and they diagnose your ailments they ask a series of questions and take a series of measurements or readings (weight, height, temperature, blood pressure) and then diagnoses your situation. Not that I am comparing what we do to a doctor but the process is the same. We ask, “What’s problem are you trying to solve (pump a fluid from point A to point B)?” and “What are your symptoms (high flow, low head, variable pressure)?” and then we have lots of tools at our disposal to diagnose the application and prescribe a solution. I will talk about chemical resistance and materials of construction, among other topics, in coming articles but for today, I would like to help you understand AODD pump curves and what information is available and based on the duty point, how we prescribe the pump model for the application. A typical inquiry might include “I need to pump a runoff sump of rainwater (their problem we are going to solve) up 100 feet to a storage tank and would like to do it at about 25 Gallons Per Minute (the symptoms of their application)”. Notwithstanding the need to evaluate materials of construction based on chemical compatibility and the fluid characteristics, we would like to the pump curves to see what size or series of pump we would need to prescribe an appropriate solution. Based on the symptoms, a 3/4” metallic pump could be one of the options so I will use this curve based on where the duty point falls – most favorably in the middle or sweet spot of the curve (more to come on that later). Based on the input received we find the head pressure in feet (100’) and then the requested flow (25 GPM) and [...]

2024-01-19T10:04:12-06:00July 9, 2023|News|

Demystifying Air Pressure Requirements for AODD Pumps

Demystifying Air Pressure Requirements for AODD Pumps There is generally much confusion and misinformation about the differences between Cubic Feet per Minute (CFM), Standard Cubic Feet per Minute (SCFM) and Pounds per Square Inch (PSI), Pounds per Square Inch – Gauge (PSIG) when it applies to powering an AODD pump. Even I get a bit tripped up but hopefully the information below will help us all better understand the terminology. In a future article, I will provide an overview of how to read and understand the different aspects of an AODD performance curve and what air force (PSI) and air flow (SCFM) requirements are called out depending on your duty point which is where Total Dynamic Head (TDH) and Fluid Flow requirements (GPM) intersect. As you can see, we love our pump acronyms so I will start keeping a list and share later. PSI/PSIG is technically defined as the pressure or intensity of air applied on one square inch on the surface of an object. For example, when you are pumping up a bicycle tire with a hand pump, it seems like it takes forever since the force of the air going into the tire is very low. There is a lot of surface area on the inside of that tire so it takes a lot of pumps of air to fill. Theoretically, PSI is used to tell how full you can make that tire using the hand pump with no time limit. CFM/SCFM is used to measure the volume/quantity of air flowing and technically called out as the amount of air within one cubic foot of volume. Back to the bicycle tire example above, if you were to use your handy-dandy garage air compressor which would provide much more flow of air, the time to fill the tire is much faster because the volume of the air is much higher than you can produce with a handheld tire pump. Clear as mud, huh? Rules of Thumb for CFM: [...]

2024-01-19T10:04:59-06:00July 8, 2023|AODD Pumps|

Why Choose AODD Pumps

I have been asked many times over the past 12+ years why anyone would want or need to use an Air-Operated Double Diaphragm (AODD) pump and I reply, “Why wouldn’t anyone want to use one?” I usually go into my list of multiple reasons why and they look at me as if I just recited them the Declaration of Independence rather than answer their specific question (I often tend to overexplain lots of simple features and benefits). There are lots of great reasons to use AODD pumps and I want to point out and discuss them and give real-world examples that tend to get lost in the higher-level discussions. Throughout this series of mini-articles, I would like to dig deeper into the many reasons for why you should choose an AODD pump and how they apply to your everyday pump selection process. Do You Have a Compressor? First and foremost, you must have a compressor as AODD pumps are by definition Air-Operated or Air-Powered or Air-Driven depending on where you are in the world. That being said, in general, you will need an industrial sized compressor to create enough energy to get the pumps to shift or reciprocate in order to get the fluid moving through the pump. A small, garage-sized pump generally cannot create enough energy (rated in SCFM – Standard Cubic Feet per Minute) to cycle the pump as most AODD pumps require 20-30 SCFM to “crack” the pump or make it start shifting. More on the compressor output requirements to come in future mini-articles. The investment in an industrial compressor can be sometimes overwhelming for some smaller companies who want to use a very few AODD pumps so they tend to stick with motor-driven pump technologies. In companies that already have a compressor on-site, it makes sense to include AODD pumps for transferring all kinds of chemicals and fluids. Applications like powering air tools or spraying equipment or even using a pneumatic impact wrench to change [...]

2024-01-19T10:06:41-06:00July 6, 2023|AODD Pumps|

Quick Links

Go to Top