AODD Pumps

Why Muffler Icing Occurs in AODD Pumps and How to Fix It

2024-07-18T03:52:20-05:00July 18, 2024|AODD Pumps|

Air-operated double diaphragm pumps are extensively utilized across various industry due to their adaptability capacity to manage an array of fluids and sturdy construction. Nonetheless like any equipment they come with their set of difficulties. One common challenge that operators of air-operated double diaphragm pumps encounter is the occurrence of muffler icing. This issue can result in decreased performance, higher maintenance expenses and potential operational downtime. Letā€™s explore the reasons, behind muffler icing in air-operated double diaphragm pumps, approaches to prevent and address this issue. Before we get into the details of muffler icing it's important to grasp the concept, behind air-operated double diaphragm pumps. These pumps work by utilizing air to move two diaphragms in a back-and-forth motion. These diaphragms generate a vacuum that pulls in the liquid being pumped and then pushes it out through the discharge opening. The air that powers the diaphragms is released through a muffler to minimize noise levels. The Mechanism Behind Muffler Icing Muffler icing occurs when the temperature of the exhaust air drops below the freezing point of water, causing moisture in the air to condense and freeze. This process can be attributed to the Joule-Thomson effect, a thermodynamic phenomenon where a gas cools upon expanding. When compressed air is released from the high-pressure environment within the pump to the lower pressure environment outside, it expands and cools rapidly. If the exhaust air temperature drops below 0Ā°C (32Ā°F), any moisture present will freeze, leading to the formation of ice in the muffler. Factors Contributing to Muffler Icing Several factors contribute to the occurrence of muffler icing in Air-operated double diaphragm pumps: Humidity in Compressed Air: The primary factor is the presence of moisture in the compressed air. Even small amounts of water vapor can condense and freeze when the air expands and cools. Ambient Temperature: Low ambient temperatures increase the likelihood of muffler icing. In colder environments, the exhaust air cools more quickly, making it easier for ice to form. Air Pressure [...]

Top Challenges and Solutions for AODD Pumps with High Viscosity Fluids

2024-07-18T03:54:33-05:00July 18, 2024|AODD Pumps|

High viscosity fluid handling poses several obstacles, in different sectors ranging from petroleum to food production. Grasping the characteristics of these liquids and choosing the correct high viscosity pump is essential for operations. AODD pumps are devices utilized in industries due to their capacity to manage a diverse array of fluids including those with high viscosity. However, the viscosity of fluids can significantly impact the performance and efficiency of these pumps, leading to various operational challenges. Understanding these challenges and implementing effective solutions is crucial for maximizing the effectiveness of air operated pumps in handling high viscosity fluids. Challenges Faced by Air-Operated Pumps with High Viscosity Fluids 1. Reduced Flow Rates High viscosity fluids tend to resist flow more than low viscosity fluids. This resistance can result in reduced flow rates through the pump system. Air-operated pumps, which rely on compressed air to move diaphragms and transfer fluids, may experience slower flow rates when handling viscous fluids. This can lead to decreased efficiency and longer processing times, impacting overall productivity. 2. Increased Friction and Wear Viscous fluids can cause higher friction within the pump components, leading to increased wear and tear over time. This friction can affect the diaphragms, valve seats, and other moving parts of the pump, potentially reducing the lifespan of these components. Increased wear also necessitates more frequent maintenance and replacement, adding to operational costs. 3. Difficulty in Priming and Self-Priming Capability Air-operated pumps rely on fluid flow to maintain priming and self-priming capabilities. With high viscosity fluids, the pump may struggle to prime initially or maintain prime during operation. This difficulty in priming can lead to inefficient startup processes and interruptions in fluid transfer operations. 4. Cavitation Risks High viscosity fluids can increase the risk of cavitation within the pump. Cavitation occurs when low pressure at the pump inlet causes vapor bubbles to form and collapse within the fluid, leading to damage to pump components and reduced efficiency. Managing cavitation risks becomes crucial when operating air [...]

How to Select Right Slurry Pump for Your Mining Operation?

2024-07-09T10:50:18-05:00January 22, 2024|AODD Pumps|

In the world of mining operations, where efficiency and productivity reign supreme, the significance of choosing the right slurry pump cannot be overstated. The selection of an appropriate slurry pump isn't merely a matter of preference; it is a decision that can profoundly affect the very core of mining activities. Explore the critical importance of making the correct choice when it comes to slurry pumps and the far-reaching impacts this decision can have on the overall success and profitability of mining operations. Whether you are a seasoned mining professional seeking to optimize your processes or a newcomer navigating the complexities of this industry, understanding the crucial role of slurry pump selection is a fundamental step towards achieving operational excellence. Understanding Slurry Pumps Slurry pumps are specialized type of AODD pumps designed to efficiently move a mixture of solids (such as minerals, sand, or gravel) suspended in a liquid (typically water or a chemical solution). This abrasive and often abrasive mix, known as slurry, can be incredibly dense and challenging to transport using standard pumps. The primary purpose of slurry pumps is to facilitate the movement of these heavy and abrasive slurries from one point to another within mining, mineral processing and other industries. Whether it's transferring ore, tailings, or processing materials in various stages of production, slurry pumps ensure a reliable and consistent flow, contributing significantly to operational efficiency and productivity. They are engineered to withstand the harsh conditions and high-wear environments commonly found in mining operations, making them indispensable tools for handling slurries effectively. Assessing Your Mining Operation Identifying the specific needs of your mining operation is a foundational step in the process of selecting the right high pressure slurry pump. To make an informed choice, it's essential to gain a comprehensive understanding of the unique requirements and objectives of your mining venture. Firstly, consider the nature of the minerals or materials you're extracting; different substances may necessitate distinct slurry pump specifications due to variations in particle size, [...]

Centrifugal vs. Positive Displacement Slurry Pumps: Which is better?

2024-06-24T05:19:07-05:00January 12, 2024|AODD Pumps|

In the world of fluid handling, slurry pumps quietly powers countless industries by transporting abrasive and viscous materials. These robust machines play a pivotal role in industries ranging from mining and wastewater treatment to agriculture and construction. However, the selection of the right slurry pump can be a critical decision, often determining the efficiency, reliability and longevity of an entire operation. Let's understand two types of slurry pumps: centrifugal and positive displacement slurry pumps. By understanding their mechanisms, advantages and limitations, you'll be better equipped to answer the fundamental question: Which is the superior choice for your specific application? Explore the world of centrifugal and positive displacement slurry pumps and uncover the secrets to making the right choice. Centrifugal Slurry Pumps Centrifugal slurry pumps operate on a fascinating principle that enables them to efficiently handle various slurry materials. At their core, these pumps employ an impeller-driven mechanism, which is a key component of their operation. The impeller is a specially designed, high-speed rotating component within the pump housing. The key to the impeller's effectiveness lies in the application of the centrifugal force principle. As the impeller rapidly rotates, it imparts kinetic energy to the slurry particles present in the pump. The centrifugal force generated by this rotation causes the slurry to move outward from the center of the impeller towards the outer edges. As a result of this centrifugal force, the slurry gains momentum and is directed towards the pump's discharge outlet. This process effectively creates a flow of the slurry through the pump, allowing it to be transported from one point to another. Centrifugal slurry pumps rely on the combined action of the impeller's rotation and the centrifugal force it generates to propel the slurry, making them highly efficient at handling high-flow, low-viscosity slurries in a wide range of industrial applications. Limitations of Centrifugal Slurry Pumps Inefficiency with High-Viscosity and Abrasive Slurries: One of the primary limitations of centrifugal slurry pumps is their reduced efficiency when dealing with high-viscosity [...]

Demystifying Air Pressure Requirements for AODD Pumps

2024-01-19T10:04:59-06:00July 8, 2023|AODD Pumps|

Demystifying Air Pressure Requirements for AODD Pumps There is generally much confusion and misinformation about the differences between Cubic Feet per Minute (CFM), Standard Cubic Feet per Minute (SCFM) and Pounds per Square Inch (PSI), Pounds per Square Inch ā€“ Gauge (PSIG) when it applies to powering an AODD pump. Even I get a bit tripped up but hopefully the information below will help us all better understand the terminology. In a future article, I will provide an overview of how to read and understand the different aspects of an AODD performance curve and what air force (PSI) and air flow (SCFM) requirements are called out depending on your duty point which is where Total Dynamic Head (TDH) and Fluid Flow requirements (GPM) intersect. As you can see, we love our pump acronyms so I will start keeping a list and share later. PSI/PSIG is technically defined as the pressure or intensity of air applied on one square inch on the surface of an object. For example, when you are pumping up a bicycle tire with a hand pump, it seems like it takes forever since the force of the air going into the tire is very low. There is a lot of surface area on the inside of that tire so it takes a lot of pumps of air to fill. Theoretically, PSI is used to tell how full you can make that tire using the hand pump with no time limit. CFM/SCFM is used to measure the volume/quantity of air flowing and technically called out as the amount of air within one cubic foot of volume. Back to the bicycle tire example above, if you were to use your handy-dandy garage air compressor which would provide much more flow of air, the time to fill the tire is much faster because the volume of the air is much higher than you can produce with a handheld tire pump. Clear as mud, huh? Rules of Thumb for CFM: [...]

Why Choose AODD Pumps

2024-01-19T10:06:41-06:00July 6, 2023|AODD Pumps|

I have been asked many times over the past 12+ years why anyone would want or need to use an Air-Operated Double Diaphragm (AODD) pump and I reply, ā€œWhy wouldnā€™t anyone want to use one?ā€ I usually go into my list of multiple reasons why and they look at me as if I just recited them the Declaration of Independence rather than answer their specific question (I often tend to overexplain lots of simple features and benefits). There are lots of great reasons to use AODD pumps and I want to point out and discuss them and give real-world examples that tend to get lost in the higher-level discussions. Throughout this series of mini-articles, I would like to dig deeper into the many reasons for why you should choose an AODD pump and how they apply to your everyday pump selection process. Do You Have a Compressor? First and foremost, you must have a compressor as AODD pumps are by definition Air-Operated or Air-Powered or Air-Driven depending on where you are in the world. That being said, in general, you will need an industrial sized compressor to create enough energy to get the pumps to shift or reciprocate in order to get the fluid moving through the pump. A small, garage-sized pump generally cannot create enough energy (rated in SCFM ā€“ Standard Cubic Feet per Minute) to cycle the pump as most AODD pumps require 20-30 SCFM to ā€œcrackā€ the pump or make it start shifting. More on the compressor output requirements to come in future mini-articles. The investment in an industrial compressor can be sometimes overwhelming for some smaller companies who want to use a very few AODD pumps so they tend to stick with motor-driven pump technologies. In companies that already have a compressor on-site, it makes sense to include AODD pumps for transferring all kinds of chemicals and fluids. Applications like powering air tools or spraying equipment or even using a pneumatic impact wrench to change [...]

Go to Top